Πρωτοβάθμια και Δευτεροβάθμια Εκπαίδευση

Τυπική Εκπαίδευση => Σχολικά μαθήματα => Μήνυμα ξεκίνησε από: antonis76 στις Οκτωβρίου 14, 2009, 12:14:54 am

Τίτλος: ΜΙΑ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ
Αποστολή από: antonis76 στις Οκτωβρίου 14, 2009, 12:14:54 am
ΠΑΙΔΙΑ ΚΑΛΗΣΠΕΡΑ.ΤΗ
Τίτλος: Απ: ΜΙΑ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ
Αποστολή από: dimstella στις Οκτωβρίου 14, 2009, 12:22:39 am
Φυσικός είμαι, αλλά θα σου πω τη γνώμη μου.

Οι "στατιστικές ανωμαλίες" είναι περισότερο πιθανές όταν έχεις μικρό δείγμα.
Επαναλαμβάνω ότι είναι η "διαισθητική" άποψή μου, ακολουθεί στη συνέχεια το" ϊππικό" (και βαρύ πυροβολικό) του φορουμ
Τίτλος: Απ: ΜΙΑ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ
Αποστολή από: horror_mis8ios στις Οκτωβρίου 14, 2009, 01:03:25 am
το πρωτο είναι το πιο πιθανό να συμβεί!!!
αν εχω υπολογισει σωστα με πιθανότητα 0.17188

το δευτερο εχει πιθανότητα 0,000039251
Τίτλος: Απ: ΜΙΑ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ
Αποστολή από: fragy στις Οκτωβρίου 16, 2009, 12:04:16 am
Νηπιαγωγός είμαι και δεν ξέρω αν κάνω καλά που λέω την γνώμη μου ή σε μπερδεύω. Θεωρητικά έχουν τις ίδιες πιθανότητες 7/10= 70/100=0,7
αλλά αν το θέμα είναι παγίδα- πρόβλημα λογικής ισχύει το πρώτο λόγω μικρότερου δείγματος και επίσης λόγω λογικής. π.χ. ένας αθλητής που τρέχει 7m/sec δεν σημαίνει οτι τρέχει και 70m/10sec γιατί δεν γίνεται να τρέχει με την ίδια ταχύτητα. Αντίστοιχα είναι δύσκολο να γεννηθούν τα πρώτα 70 παιδιά αγόρια ενώ μπορεί να τύχει σε στα 10 πρώτα τα 7 να είναι αγόρια. Κάτι τέτοια προβλήματα μας τα έβαζαν στην σχολή, γι αυτό είπα να τα αναφέρω. Αν κάποιος θεωρεί για κάποιο λόγο οτι είμαι λάθος, ας μου το πει να μάθω και γω κάτι με την ευκαιρία ;D
Τίτλος: Απ: ΜΙΑ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ
Αποστολή από: dimstella στις Οκτωβρίου 16, 2009, 12:44:19 am
περιμένουμε το "βαρύ πυροβολικό", δηλαδή τους μαθηματικούς. Δώστε εξισώσεις στο λαό!
Τίτλος: Απ: ΜΙΑ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ
Αποστολή από: jtsop στις Οκτωβρίου 16, 2009, 01:39:13 am
..
Τίτλος: Απ: ΜΙΑ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ
Αποστολή από: air στις Οκτωβρίου 16, 2009, 02:05:19 am
Σωστα ειναι ολα οσα ειπωθηκαν παραπανω, κατι που βγαινει και διαισθητικα. Με αναλυτικο τροπο, οι λιγες 'δοκιμες' (>7/10) υπολογιζονται με (αθροιστικη) διωνυμικη κατανομη (οπως σωστα υπολογισε ο horrormis8ios), και οι πολλες (>70/100) απο πινακα κανονικης κατανομης Φ(z=4) οπου θα εμπιστευτω τον horrormis8ios, καθοτι ο πινακας που εχω σταματαει στο z=3,9 (και ουτως 'η' αλλως εχει μονον 4 δεκαδικα).

..ρε τι κανουμε νυχτιατικα!
Τίτλος: Απ: ΜΙΑ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ
Αποστολή από: Boldini στις Οκτωβρίου 16, 2009, 02:09:22 am
περιμένουμε το "βαρύ πυροβολικό", δηλαδή τους μαθηματικούς. Δώστε εξισώσεις στο λαό!
ναι ρε παιδιά βάλτε καμιά ασκησούλα ολοκληρώματα,παραγώγους κάτι να φτιαχτούμε! ;D ;D ;D
ξέρω.off topic...
Τίτλος: Απ: ΜΙΑ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ
Αποστολή από: chrismath στις Οκτωβρίου 16, 2009, 05:10:49 pm
Το πρωτο. Ισχυει γενικα ο << Νομος των μεγαλων αριθμων >>. Οπως οταν ριχνουμε κερμα για κεφαλη ή γραμματα. Στις 5 εκτελεσεις του πειραματος μπορει να εχουμε αποτελεσμα 5-0 ή 4-1 ή 3-2. Στις 100,200,300,.. εκτελεσεις ομως τα οι πιθανοτητες θα τεινουν στο 0,5 (50%) για καθε οψη του νομισματος. Επειδη οι πιθανοτητα αγορι-κοριτσι ειναι περιπου 0,5-0,5 , πιο πιθανο για να εχουμε αποτελεσμα 0,7-0,3 ειναι σε λιγες εκτελεσεις του πειραματος παρα σε πολλες γιατι εκει θα ισχυσει ο << Νομος των μεγαλων αριθμων >>.
Τίτλος: Απ: ΜΙΑ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ
Αποστολή από: Erofilaki στις Οκτωβρίου 16, 2009, 08:10:21 pm
Συνάδελφοι μαθηματικοί (και όχι μόνο) :

Αυτή η διωνυμική κατανομή ισχύει και για τα δύο φύλα; Μπορεί δηλαδή η ερώτηση να λέει αντί για αγόρια, κορίτσια;;; ???

χιχι...Ωραίο θέμα πιάσαμε, μπράβο!