0 μέλη και 1 επισκέπτης διαβάζουν αυτό το θέμα.
Η 17 γνώμη μου είναι δεν έπρεπε να σας μπερδέψει τόσο. Είναι νομίζω τραβηγμένο να θεωρήσει κανείς ότι ζητείται η πολυπλοκότητα του αλγορίθμου αθροίσματος. Τα αριστερά μέλη αποτελούν συναρτήσεις πολυπλοκότητας με βάση το n, όπως σε όλα τα βιβλία αλγορίθμων. Έπρεπε μεν το ΑΣΕΠ να διατυπώσει το θέμα ως "θεωρήστε το αριστερό μέλος ως συνάρτηση πολυπλοκότητας του n" αλλά ενας αλγόριθμος δεν ισούται με κάτι, ενώ μια συνάρτηση πολυπλοκότητας "ισούται" με έναν ασυμπτωτικό συμβολισμό.
Καλημέρα! Να ρωτήσω..με βάση την άποψη ότι το O(n/k) είναι απλοϊκή απάντηση, τότε αυτό δεν περιλαμβάνει και το εξής΄ ναι μεν για k=1, το n/k=n αλλά αυτό θυμίζει τις πιθανότητες Λυκείου: Δηλαδή αν ρίξουμε ένα ζάρι πάρα πολλές φορές (n) τότε "ξέρουμε"-αναμένουμε να έρθουν τις ίδιες φορές τα k αποτελέσματα(n/k). Προσωπικά όμως το πρώτο που απέκλησα ήταν το n/k, γιατί για μεγάλο n αν θεωρήσουμε ότι "στο ζάρι" μας προστείθενται παραπάνω πλευρές(μεγαλύτερο k) για τις ίδιες n ρίψεις και το k πλησιάζει το n τότε παύει να ισχύει το πιθανοτικά ισοδύναμο μεταξύ των αποτελεσμάτων των ρίψεων, αφού είναι σαν να ρίχνουμε ένα κοινό ζάρι π.χ. 8 φορές και αναμένουμε να φέρουμε σίγουρα τα 1,2,3,4,5,6 (ή αλλιώς ρίχνω 100 φορές ζάρι με πλευρές 1-40 και τα 1-40 θα έρθουν σίγουρα από 2 φορές) Δηλαδή, για να ισχύει το n/k πρέπει πιθανοτικά να ισχύει ότι το n πάρα πολύ μεγάλο και το k πάρα πολύ μικρό,πάντα με τη λογική ότι τα n στοιχεία έχουν την ίδια πιθανότητα εισόδου.Ωστόσο, αν είχαν την ίδια πιθανότητα εισόδου τότε ποιός ο λόγος να χρησιμοποιήσουμε hashing και δεν δεσμεύουμε εξαρχής n/k χώρο για κάθε ομάδα στοιχείων με το χαρακτηριστικό k; Eπίσης είναι αυτό δυνατό να συμβεί σε προβλήματα πρακτικά-υπολογιστικά-καθημερινά; Τέλος για να γίνει αυτό πιο αντιληπτό, με το n/k έχουμε ότι και 1000n/1000k=n/k=10000000n/10000000k, εν ολίγοις συμπεραίνω ότι αν δοκιμάζω να αυξάνω και το n και το k τότε η συνάρτηση hash έχει πάντα με βάση την πολυπλοκότητα το ίδιο αποτέλεσμα κάτι που μπορεί να ισχύεί, Πιθανοτικά πάντα, με n και με κ=2 κέρμα ,με 3n και κ=6 ζάρι, αλλά σίγουρα όχι π.χ. με 100n για κ=100 βαθμούς (όπως στον Ασεπ).Πληροφοριακά να πώ ότι δεν αναφέρομαι στα παραπάνω γιατί έτσι μου βγήκε το αντιδραστικό. Την κατάσταση που επικρατεί την γνωρίζει ο καθένας!! Θέλω να τεκμηριώσω την ένστασή μου γιατί έχω 31-32 "ορθώς σωστές"(δεν θυμάμαι για μία!!) και άρα 29-28 "ορθώς λάθος". Ελπίζω να μη δημιουργώ αρνητικό κλίμα σε άλλους με 10,20..60 ορθές απαντήσεις!!Αυτό που με απαχολεί επίσης είναι η απάντηση που δώθηκε στην ερώτηση 4(χρησιμοποιεί τη λέξη ΓΛΩΣΣΑ) ΣΕ ΣΧΕΣΗ με την απάντηση που δώθηκε στην ερώτηση 57 η οποία δεν περιλαμβάνει το δ(Άρα συμπεραίνω...ότι τα σενάρια πμορούν να γραφούν σε οποιαδήποτε γλώσσα!!!!Και μιας και προηγούμενα κάποιος συνάδελφος μίλησε περί βιβλίων αλγορίθμων, ψάχνωντας περαιτέρω για την ερώτηση 4 όλοι οι όροι που αναφέρονται περί γραμματικές χωρίς συμφραζόμενα...τους έχει δώσει-ορίσει ο "γνωστός άγνωστος" για τους αλγορίθμους τσόμσκι!.Παρόλα αυτά χρησιμοποιούνται και με το κόμμα που λέμε,άρα στην 17 που χρησιμοποιείταi το μαθηματικό-κοινώς αποδεκτό άθροισμα δεν έπρεπε να αναφέρει τουλάχιστον! για κάθε n>1;;;; Σύμφωνα λοιπόν με το διαχωρισμό των γλωσσων από τον προαναφερόμενο υπάρχουν και οι κανονικές γλώσσες π.χ.αρβανίτικα. Ωραία τότε με βάση την 57 θα μπορώ να φτιάξω και σενάριο με αυτά!!:-)
Καλημέρα! Να ρωτήσω..με βάση την άποψη ότι το O(n/k) είναι απλοϊκή απάντηση, τότε αυτό δεν περιλαμβάνει και το εξής΄ ναι μεν για k=1, το n/k=n αλλά αυτό θυμίζει τις πιθανότητες Λυκείου: Δηλαδή αν ρίξουμε ένα ζάρι πάρα πολλές φορές (n) τότε "ξέρουμε"-αναμένουμε να έρθουν τις ίδιες φορές τα k αποτελέσματα(n/k). Προσωπικά όμως το πρώτο που απέκλησα ήταν το n/k, γιατί για μεγάλο n αν θεωρήσουμε ότι "στο ζάρι" μας προστείθενται παραπάνω πλευρές(μεγαλύτερο k) για τις ίδιες n ρίψεις και το k πλησιάζει το n τότε παύει να ισχύει το πιθανοτικά ισοδύναμο μεταξύ των αποτελεσμάτων των ρίψεων, αφού είναι σαν να ρίχνουμε ένα κοινό ζάρι π.χ. 8 φορές και αναμένουμε να φέρουμε σίγουρα τα 1,2,3,4,5,6 (ή αλλιώς ρίχνω 100 φορές ζάρι με πλευρές 1-40 και τα 1-40 θα έρθουν σίγουρα από 2 φορές) Δηλαδή, για να ισχύει το n/k πρέπει πιθανοτικά να ισχύει ότι το n πάρα πολύ μεγάλο και το k πάρα πολύ μικρό,πάντα με τη λογική ότι τα n στοιχεία έχουν την ίδια πιθανότητα εισόδου.
Ωστόσο, αν είχαν την ίδια πιθανότητα εισόδου τότε ποιός ο λόγος να χρησιμοποιήσουμε hashing και δεν δεσμεύουμε εξαρχής n/k χώρο για κάθε ομάδα στοιχείων με το χαρακτηριστικό k; Eπίσης είναι αυτό δυνατό να συμβεί σε προβλήματα πρακτικά-υπολογιστικά-καθημερινά;
Παράθεση από: GOODmorning στις Φεβρουαρίου 12, 2009, 11:01:45 pm:-)Εγώ πάντως θα σε συμπεριλάβω στην ένστασή μου:-))Αν σκοπεύεις πραγματικά να στείλεις ένσταση στείλε pm να ετοιμάσουμε μαζί την υπερασπιστική μας γραμμή !!!
:-)Εγώ πάντως θα σε συμπεριλάβω στην ένστασή μου:-))
τελικα παιδια επειδη το εχω χασει λιγο το θεμα... μπορει να γινει μια περιληψη, για ποιες τελικα απαντησεις του ΑΣΕΠ εχουμε ενσταση;;για να την στειλουμε στον ασεπ. οχι οτι υπαρχει περιπτωση να κανουν κατι.....
Πάει ο ΑΣΕΠ, μας τελείωσε προς το παρών. Δεν αξίζει να το τυραννάμε άλλο. Απλά αντί για διορισθέντες με την πρώτη (πράγμα που έτσι και αλλιώς ήταν άπιαστο όνειρο) θα πρέπει να δουλέψουμε κάνα 2 χρονάκια ως ωρομίσθιοι (μέχρι τον επόμενο διαγωνισμό)ι. Με 68% στο γνωστικό (+ 2 ερωτήσεις που δε θυμάμαι τι απάντησα) πιστεύω να με πάρουν ... Έτσι και αλλιώς οι περισσότεροι επιτυχόντες αυτού του διαγωνισμού μόλις προκηρυχθούν οι θέσεις για τα ολοήμερα θα διοριστούμε.
Παράθεση από: thymiaras στις Φεβρουαρίου 18, 2009, 10:26:34 pmΠάει ο ΑΣΕΠ, μας τελείωσε προς το παρών. Δεν αξίζει να το τυραννάμε άλλο. Απλά αντί για διορισθέντες με την πρώτη (πράγμα που έτσι και αλλιώς ήταν άπιαστο όνειρο) θα πρέπει να δουλέψουμε κάνα 2 χρονάκια ως ωρομίσθιοι (μέχρι τον επόμενο διαγωνισμό)ι. Με 68% στο γνωστικό (+ 2 ερωτήσεις που δε θυμάμαι τι απάντησα) πιστεύω να με πάρουν ... Έτσι και αλλιώς οι περισσότεροι επιτυχόντες αυτού του διαγωνισμού μόλις προκηρυχθούν οι θέσεις για τα ολοήμερα θα διοριστούμε.Δεν θέλω να σε απογοητεύσω αλλά μελέτησε λίγο αυτά που θα γράψω..-Σίγουρα θα σε πάρουν ωρομίσθιο σε ολοήμερο.-Δύο χρόνια ωρομισθίας είναι το πολύ 10 μόρια!Στό τέλος της χρονιάς αυτός που θα έχει 10 μόρια θα βρίσκεται περίπου στη θέση 700 του ενιαίου πίνακα διορισμών.-Ο επόμενος διαγωνισμός δεν είναι σίγουρο ότι θα γίνει σε δύο χρόνια.-Τα μόρια που θα πάρεις άπο τον ΑΣΕΠ δεν είναι "πραγματικά" και στον επόμενο θα έχεις τα μισά.-Για να διοριστούμε με προυπηρεσία πρέπει να υπάρξουν πολλές κενές θέσεις(δηλαδή περίπου 1000 απο ΑΣΕΠ & 40%)Με 68% πιστεύω ότι θα είσαι κοντά στους πρώτους.Οπότε μην το αποκλείεις και για τώρα Έχεις Παιδαγώγικο;Υποθέτω πως όχι σύφφωνα με τα παραπάνω.
Γιατί μιλάμε μόνο για ωρομίσθιους; Αναπληρωτές δεν παίζουν;
Όταν λέω θα διοριστούμε στον επόμενο διαγωνισμό συνυπολογίζω και μόρια από τον ΑΣΕΠ και μόρια ωρομισθίας (μιλάω πιο πολύ προσωπικά).